178. Stereoselectivity of the Radical Reductive Alkylation of Enamines: Importance of the Allylic 1,3-Strain Model

by Serge Schubert and Philippe Renaud $\left.{ }^{1}\right)^{*}$
Institut de Chimie Organique, Université de Lausanne, CP, CH-1015 Lausanne-Dorigny
and Pierre-Alain Carrupt
Ecole de Pharmacie, Université de Lausanne, BEP, CH-1015 Lausanne-Dorigny
and Kurt Schenk
Institut de Cristallographie, Université de Lausanne, BSP, CH-1015 Lausanne-Dorigny

(15.VI.93)

Abstract

Radical addition to enamines using $\mathrm{Bu}_{3} \mathrm{SnH}$ as reducing agent are reported (Schemes 2 and 4). The diastereoselectivity of these reactions was examined in different systems (Tables 1 and 2). Enamines derived from cyclic ketones such as cyclohexanone were alkylated with high diastereoselectivity with preferential formation of the cis-disubstituted cycloalkanes. In acyclic systems such as enamines derived from propiophenone and diethyl ketone, moderate to high stereoselectivities were observed in the H -abstraction step. A model based principally on minimization of allylic 1,3 -strain ($A^{1,3}$ strain) was deduced from the experimental results and semi-empirical (AM1) calculations.

Introduction. - The work of Stork and coworkers [1] in 1954 on the alkylation and acylation of enamines has generated a strong interest in this field of chemistry. Reactions with a wide range of electrophiles [2a] and cycloadditions [2b] were reported. The amino moiety is usually used as an activating group and is removed during the final workup. However, hydride reduction of iminium intermediates [3] is possible and leads to tertiary amines. We recently reported an alternative method for performing the reductive alkylation of enamines (Scheme 1) in a one-step procedure via a radical-chain mechanism [4-6]. Radical additions to enamines via a SET mechanism [7] [8] and a group-transfer mechanism [9] [10] were also published.

Scheme 1

$E W G=$ electron-withdrawing group
In this paper, we focus on the different factors governing the diastereoselectivity of the radical-mediated reductive alkylation of enamines. Enamines derived from cyclic and acyclic carbonyl compounds were investigated.

Results. - The enamines 1-12 were either commercially available (1, 2, and 5) or prepared from the corresponding ketones and secondary amines by either azeotropic

[^0]removal of $\mathrm{H}_{2} \mathrm{O}$ (6 and 8), by the Weingarten method [11] with $\mathrm{TiCl}_{4}(\mathbf{3}, 4,7,9$, and $\mathbf{1 0})$, or by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{Et}_{2} \mathrm{O}(\mathbf{1 1 - 1 2})$. The radical precursors were either commercially available or prepared in a straightforward manner (see Exper. Part). The results of the reductive alkylation of the cyclic enamines 1-6 (Scheme 2) are reported in Table 1. In
Scheme?

$R_{2} N=$ pyrrolidin-1-yl
$\mathrm{R}_{2} \mathrm{~N}=$ morpholino
$\mathrm{R}_{2} \mathrm{~N}=$ azetidin-1-yl

5

cis-13-19

$13 \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl, $\mathrm{EWG}=\mathrm{TolSO}_{2}$
$14 \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-y!, EWG $=\mathrm{CN}$
$15 \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-y/, $\mathrm{EWG}=$ COOMe
$16 R_{2} N=$ pyrrolidin-1-yl, 'EWG' $=C_{8} F_{13}{ }^{\circ}$)
$17 \mathrm{R}_{2} \mathrm{~N}=$ morpholino, EWG $=\mathrm{TolSO}_{2}$
$18 \mathrm{R}_{2} \mathrm{~N}=$ azetidin-1-yl, EWG $=\mathrm{TolSO}_{2}$
$19 \mathrm{R}=\mathrm{Et}, \mathrm{EWG}=\mathrm{PhSO}_{2}$

cis-20

$20 r^{5}$)

cis-21 EWG $=\mathrm{PhSO}_{2}$
cis-22 $\mathrm{EWG}=\mathrm{COOMe}$

21r ${ }^{\text {a }}$) $\mathrm{EWG}=\mathrm{PhSO}_{2}$
$\left.22 \mathrm{r}^{2}\right) \mathrm{EWG}=\mathrm{COOMe}$
a) \mathbf{r} for radical, see Discussion. b) 'EWG' means EWGCF_{2} instead of EWGCH_{2} in Formula.

Table 1. Reductive Alkylation of Cyclic Enamines (Scheme 2)

Entry	Enamine	EWGCH ${ }_{2} \mathrm{X}$	Product	Yield [\%]	cis/trans
1	1	TolSO ${ }_{2} \mathrm{CH}_{2} \mathrm{Cl}$	13	57	97:3
2	1	$\mathrm{CNCH}_{2} \mathrm{SPh}$	14	88	92:8
3	1	$\mathrm{MeOOCCH}_{2} \mathrm{SPh}$	15	74	98:2
4	1	$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{STol}^{\text {a }}$)	16	58	90:10
5	2	TolSO ${ }_{2} \mathrm{CH}_{2} \mathrm{Cl}$	17	62	96:4
6	3	TolSO ${ }_{2} \mathrm{CH}_{2} \mathrm{Cl}$	18	10	$>95:<5$
7	4	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	19	76	91:9
8	5	TolSO ${ }_{2} \mathrm{CH}_{2} \mathrm{Cl}$	20	54	84:16
9	6	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	21	52	75:25
10	6	$\mathrm{MeOOCCH}_{2} \mathrm{SPh}$	22	63	91:9

") 'EWG'X instead of EWGCH ${ }_{2}$ X.
all cases, the formation of the cis-disubstituted compounds was favored (see 13-22). High diastereoselectivities were obtained for enamines 1-4 derived from cyclohexanone with all radical precursors tested (Entries 1-7). Moderate diastereoselectivities were observed for cyclopentanone derivative 5 (Entry 8 , cis/trans $84: 16$) and α-tetralone derivative 6 (Entries 9 and 10, cis/trans 75:25 and 91:9).

The cis-configuration of the major isomer of 13 was deduced from its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra by looking at the coupling constant of $\mathrm{H}-\mathrm{C}(1)$ with the three vicinal protons. Due to the relative complexity of the spectrum, we reductively desulfonylated $(\mathrm{Na} / \mathrm{Hg})$ cis- $\mathbf{1 3}$ to cis-23 (Scheme 3) to assign this signal unambiguously. Thus, we deduced the configuration of cis- 23 and established that cis- 23 lies in the expected chair conformation as shown in Scheme 3. For comparison, cis-23 was also prepared according to Hutchins' procedure [12] by reduction of enamine 24 with $\mathrm{NaBH}_{3} \mathrm{CN}$ in AcOH (Scheme 3). The structure of the major isomer of 20 was established by desulfonylation to cis- $\mathbf{2 5}$ and comparison with an authentic sample of cis- $\mathbf{2 5}$ prepared by Hutchins' method from 26. The cis-configurations of the main isomers of $\mathbf{2 1}$ and $\mathbf{2 2}$ were deduced from the small $J(1,2)$ of 4.0 and 3.5 Hz , respectively. This attribution is based on the assumption that cis-21 and cis-22 lie in the conformation depicted in Scheme 3.

The results of the reductive alkylation of acyclic enamines (Scheme 4) are reported in Table 2. Enamines 7-9 prepared from propiophenone reacted with modest stereoselectivities ($60-66 \% \mathrm{ds}$) with cyanomethyl ($\rightarrow \mathbf{2 7}$; Entry 1) and (alkoxycarbonyl)methyl radicals $\left(\rightarrow \mathbf{2 8}\right.$; Entries 2 and 3) at 80°. At 10°, the stereoselectivity raised to 77% for the reaction with (phenylthio)acetonitrile (Entry 1). With bulkier electron-withdrawing groups such as phenylsulfonyl and (tert-butyl)sulfonyl, better selectivities (\rightarrow 29-32; Entries 4-7) of $80-88 \%$ ds were obtained with enamines derived from cyclic amines. Reactions with enamine 9 prepared from $\mathrm{Et}_{2} \mathrm{NH}$ were less diastereoselective ($\rightarrow \mathbf{3 3}$ and $\mathbf{3 4}$; Entries 8 and

9,68 and $76 \% \mathrm{ds}$, resp.). As can be seen, the size of the electron-withdrawing (EWG) group is critical for high diastereoselectivity, and, therefore, we decided to complex the sulfones with LiClO_{4} (Entries 4 and 5) in order to increase their steric bulk. A pronounced enhancement of the stereoselectivity was observed in the case of the PhSO_{2} group ($88 \% \mathrm{ds}$), however, no effect was observed with the t - BuSO_{2} group. The relative configuration of the major isomer of $\mathbf{2 9}$ and $\mathbf{3 1}$ was proved by X-ray analysis ${ }^{2}$) (Fig. 1). In both cases, the major isomer was like (l-configurated.

$$
\begin{aligned}
& 7 R^{\prime} \\
& 8=M e, R^{2}=P h, R_{2} N=\text { pyrrolidin-1-yl } \\
& 9 R^{\prime} \\
& 9 \mathbf{R}^{\prime}=M e, R^{2}=P h, R^{2}=P h, R=E t \\
& 10 R^{2} N=\text { morpholino } \\
& 11=M e, R^{2}=E t, R_{2} N=\text { morpholino } \\
& 12 R^{\prime}=\operatorname{i}-\mathrm{Pr}_{2}, R^{2}=H, R^{2}=H, R_{2} N=\text { pyrrolidin-1-yl } \\
& 8 \text {-azaspiro[4.5]decan-8-yl }
\end{aligned}
$$

27-37 (major)
$27 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ pyrroidin-1-yl, $\mathrm{EWG}=\mathrm{CN}$ $28 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl, EWG = COOMe $29 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl, $\mathrm{EWG}=\mathrm{PhSO}_{2}$ $30 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl, $\mathrm{EWG}=t-\mathrm{BuSO}_{2}$ $31 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ morpholino, $\mathrm{EWG}=\mathrm{PhSO}_{2}$ $32 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}_{2} \mathrm{~N}=$ morpholino, $\mathrm{EWG}=t-\mathrm{BuSO}_{2}$ $33 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}=\mathrm{Et}, \mathrm{EWG}=\mathrm{PhSO}_{2}$ $34 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}=\mathrm{Et}, \mathrm{EWG}=t-\mathrm{BuSO}_{2}$ $35 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}_{2} \mathrm{~N}=$ morpholino, $\mathrm{EWG}=\mathrm{PhSO}_{2}$ $36 R^{1}=\mathrm{Me}, \mathrm{R}^{2}=E t, \mathrm{R}_{2} \mathbf{N}=$ morpholino, $\mathrm{EWG}=\mathrm{CN}$

$37 \mathrm{R}=\mathrm{PhCHz}, \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl
$38 R=i-P r, R_{2} N=1,4$-dioxa-8-azaspiro[4.5]decan-8-yl

$\left.37 \mathrm{r}^{\mathrm{a}}\right) \mathrm{R}^{\prime}=\mathrm{PhCH}_{2}, \mathrm{R}_{2} \mathrm{~N}=$ pyrrolidin-1-yl
$\left.38 \mathrm{r}^{\mathrm{a}}\right) \mathrm{R}^{\mathrm{T}}=\mathrm{i}-\mathrm{Pr}, \mathrm{R}_{2} \mathrm{~N}=1,4$-dioxa-8-
azaspiro[4.5]decan-8-yl

1) r for radical, see Discussion.

Reductive alkylation of enamine $\mathbf{1 0}$, prepared from diethyl ketone and morpholine, is more diastereoselective than the preceding examples. E.g., chloromethyl phenyl sulfone gave the amine 35 with 93% diastereoselectivity (Entry 10). Even with nitrile group, a modest diastereoselectivity of 74% ds (Entry 11) was observed. The reductive alkylation of the enamines $\mathbf{1 1}$ and $\mathbf{1 2}$ (derived from aldehydes) using tributyltin deuteride as reducing agent was not stereoselective (Entries 12 and 13).

[^1]Table 2. Reductive Alkylation of Acyclic Enamines (Scheme 4)

Entry	Enamine	$\mathrm{EWGCH}_{2} \mathrm{X}$	Product	Yield [\%]	ds [\%]
1	7	$\mathrm{CNCH}_{2} \mathrm{SPh}$	27	81	$66^{\text {a }}$), 77^{b})
2	7	$\mathrm{MeOOCCH}_{2} \mathrm{SPh}$	28	53	64^{4})
3	7	t - $\mathrm{BuOOCCH}_{2} \mathrm{SPh}$	28 ${ }^{\text {c }}$)	27	$60^{\text {a }}$)
4	7	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	29	52	$72^{\text {a }}$), $81^{\text {b }}$), $\left.88^{\text {b }}\right)^{\text {c }}$)
5	7	$t-\mathrm{BuSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	30	58	$74^{\text {a }}$), $85^{\text {b }}$), $\left.87^{\text {b }}\right)^{\text {c }}$)
6	8	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	31	41	$80^{\text {b }}$)
7	8	$t-\mathrm{BuSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	32	48	$87^{\text {b }}$)
8	9	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	33	20	$68^{\text {b }}$)
9	9	$t-\mathrm{BuSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	34	20	$76^{\text {b }}$)
10	10	$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	35	76	$93^{\text {b }}$)
11	10	$\mathrm{CNCH}_{2} \mathrm{SPh}$	36	78	$74^{\text {a }}$)
12	11	$\mathrm{CNCH}_{2} \mathrm{SPh}$	37	60	$50^{\text {a }}$) ${ }^{\text {e }}$)
13	12	$\mathrm{CNCH}_{2} \mathrm{SPh}$	38	60	$\left.50^{\text {a }}\right)^{\text {e }}$)

$\left.\left.{ }^{\text {a }}\right) 80^{\circ} .{ }^{\text {b }}\right) 10^{\circ} .{ }^{\text {c }}$) Transesterification occurred during the workup procedure (see Exper. Part). ${ }^{\text {d }} 1$ Equiv. of $\left.\mathrm{LiClO}_{4}{ }^{\mathrm{c}}\right) \mathrm{Bu}_{3} \mathrm{SnD}$.

29

31

Fig. 1. X-Ray crystal structure of the major isomer of 29 and 31 (ORTEP plots). H-Atoms are omitted for reasons of clarity, except at the asymmetric centers. Arbitrary numbering.

Discussion. - Our rationalization of the observed diastereoselectivities is based on the hypothesis that an early transition state is operative for the H -abstraction step ${ }^{3}$). Thus, the conformational preference of the radical intermediate should strongly influence the stereoselectivity. Amino-substituted radicals are stabilized by interaction with the electron lone pair on the N -atom, and, therefore, the $\cdot \mathrm{C}-\mathrm{N}$ bond possesses partial doublebond character. We calculated the rotational barrier using ab initio methods ($6-31 \mathrm{G}^{* *}$) for the simple aminomethyl radical (Fig.2) and found a value of $6.6 \mathrm{kcal} / \mathrm{mol}$. As a consequence, a close analogy exists between dialkylamino-substituted radicals (see I) and allylic systems (see II). Investigation of the conformations of cyclic [13] and acyclic [14]

[^2]allylic systems led to the concept of allylic 1,3-strain ($A^{1.3}$ strain). The same concept was applied, with success, to conjugated radicals [15] [16]. It is likely that type-I radicals adopt a conformation where the smallest substituent on the C-atom adjacent to the radical center eclipses the pseudodouble bond to minimize $A^{1,3}$ strain. Changes in the dihedral angle around $\mathrm{C}(1)$ and $\mathrm{C}(2)$ of $\pm 30^{\circ}$ is possible with only small energy cost [14]. As a consequence, the two faces of the radical are differently shielded by L and M (Fig. 2), the steric bulk of these substituents controlling the direction of attack ${ }^{4}$).

Rotation barrier: $6.6 \mathrm{kcal} / \mathrm{mol}$

I

I

Fig. 2. Rotation barrier of amino-substituted radicals and analogy with an allylic system
To confirm this hypothesis, we performed AM1 semiempirical calculations on several cyclic and acyclic systems. We calculated the relative heat of formation of the two possible radical conformers $13 \mathrm{r}(\mathrm{ii})$ and $13 \mathrm{r}(\mathrm{v})$ (Scheme 5) possessing the $\mathrm{PhSO}_{2} \mathrm{CH}_{2}$ group in axial and equatorial position, respectively. As expected, $\mathbf{1 3 r}(\mathbf{v})$ is less stable by $c a .4 .6 \mathrm{kcal} / \mathrm{mol}$ than 13 r (ii) due to $A^{1.3}$-strain. The high stereoselectivity observed for the formation of 13 is caused by H -abstraction from the less hindered face (black arrow) of $\mathbf{1 3 r}$ (ii). For the radical adduct $\mathbf{2 0 r}$, only one minimum-energy conformation was found by calculation. This conformer, $\mathbf{2 0 r} \mathbf{r}(\mathbf{i i})$, is depicted in Scheme 5 and possesses a $\mathrm{H}-\mathrm{C}(2)-\mathrm{C}-\mathrm{N}$ dihedral angle of 57°.

$13 \mathrm{r}(\mathrm{v})\left(\Delta H_{1}=87.5 \mathrm{kcal} / \mathrm{mol}\right)$

13r(II) $\left(\Delta H_{\mathrm{f}}=82.9 \mathrm{kcal} / \mathrm{mol}\right)$

$20 r$ (ii)

For radical 29r, we calculated the relative heat of formation for fixed values of the dihedral angle $(\mathbf{H}-\mathrm{C}(2)-\mathrm{C}-\mathrm{N})$. Three minima, $29 \mathrm{r}(\mathrm{i}$ iii), were found (Scheme 6). H-Abstraction from the less hindered face of the more stable conformer 29r(ii) (black arrow) is expected to give the observed major isomer (l)-29. Conformer 29r(i) is $1.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy and leads to the minor isomer (u)-29. Conformer 29r(iii) is

[^3]higher in energy $(+4.1 \mathrm{kcal} / \mathrm{mol})$ and contributes only slightly to the formation of the major isomer (l)-29. The difference in energy between $\mathbf{2 9 r}$ (ii) and $\mathbf{2 9 r} \mathbf{r} \mathbf{(i)}$ is responsible for the observed stereoselectivity. Careful examination of the structure of $\mathbf{2 9 r}$ (ii) and $\mathbf{2 9 r}$ (i) showed that the former radical is stabilized exclusively by the N -atom. The Ph ring is orthogonal to the radical center and no delocalization of the radical to the aromatic ring is possible. In the case of conformer 29r(i), the radical is stabilized by both the amino and the Ph groups (Scheme 6). Replacement of the stabilizing Ph group by an alkyl residue is

Schemé 6

$29 r(\mathrm{i})\left(\Delta H_{\mathrm{t}}=126.3 \mathrm{kcal} / \mathrm{mol}\right)$

$35 \mathrm{r}(\mathrm{i})\left(\Delta H_{t}=86.6 \mathrm{kcal} / \mathrm{mol}\right)$

29 r (ii) $\left(\Delta H_{\mathrm{f}}=124.6 \mathrm{kcal} / \mathrm{mol}\right)$

35 r (ii) ($\left.\Delta H_{\mathrm{f}}=84.0 \mathrm{kcal} / \mathrm{mol}\right)$

29r(iii) $\left(\Delta H_{t}=128.7 \mathrm{kcal} / \mathrm{mol}\right)$

35 r (iii) $\left(\Delta H_{4}=87.6 \mathrm{kcal} / \mathrm{mol}\right)$
expected to increase the energy difference between conformers $\mathbf{i i}$ and \mathbf{i} and to enhance the diastereoselectivity of the reductive alkylation. This happens with enamine $\mathbf{1 0}$ (Table 2, Entry $10,93 \%$ ds) derived from diethyl ketone. Calculations showed that $\mathbf{3 5 r}(\mathbf{i})$ is $2.6 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathbf{3 5 r}$ (ii). Conformer $\mathbf{3 5 r}$ (iii) is destabilized by $3.6 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathbf{3 5 r}$ (ii).

Based on the above results, the following rules may be deduced for predicting the stereoselectivity of reactions based on dialkylamino-substituted radicals. For cyclic radicals, the minimum-energy conformation has the structure depicted in Fig. 3, and preferential attack occurs 'anti' to the group L. High diastereoselectivities are expected when the relative size of the two substituents L and S is very different. This is always the case when S is a H -atom and L a substituted methyl group ${ }^{5}$).

6 -membered ring

5-membered ring

Fig. 3. 1,2-Transfer of chirality: general model for cychic radicals. Black arrows represent the preferential approach of $\mathrm{Bu}_{3} \mathrm{SnH}$.

For acyclic radicals (Fig.4), the global minimum energy conformation ii is expected to be favored. However, four conformers have to be considered (i-iv). High diastereoselectivity may only be obtained when the three groups L, M, and S are sterically well differentiated. However, this condition is not sufficient, the group R^{\prime} is also playing a crucial role. When R^{\prime} is a H -atom (see radical $\mathbf{3 7} \mathrm{r}$ and $\mathbf{3 8 r}$, Table 2, Entries $I 2$ and $I 3$), no stereoselection is observed. Bigger R^{\prime} such as alkyl groups are necessary for good stereoselection.

Fig. 4. 1,2-Transfer of chirality: general model for acycfic radicals. Black arrows represent the preferential approach of $\mathrm{Bu}_{3} \mathrm{SnH}$.

[^4]The model depicted in Figs. 3 and 4 for the transfer of chirality in dialkylamino-substituted radicals is very similar to the one recently published for other stabilized radicals such as ester-[16a-e] and phenyl-substituted [10] [17] radicals. This demonstrates further the unique importance of allylic 1,3 -strain effects in radical reactions involving delocalized radicals.

Funding from the Swiss National Science Foundation is gratefully acknowledged. P. R. thanks the Stiftung für Stipendien auf dem Gebiete der Chemie for the Alfred Werner stipend.

Experimental Part

General. THF was freshly distilled from K under $\mathrm{N}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{P}_{2} \mathrm{O}_{5}$, and benzene from CaH_{2} under N_{2}. Lithium diisopropylamide (LDA; 1M) was prepared by treating at -78° a soln. of (i-Pr) ${ }_{2} \mathrm{NH}$ ($15 \mathrm{ml}, 105 \mathrm{mmol}$; distilled from $\left.\mathrm{CaH}_{2}\right)$ in THF (22.5 ml) with $1.6 \mathrm{~m} \mathrm{BuLi}(62.5 \mathrm{ml}, 100 \mathrm{mmol}$, in hexane) and stored in a brown bottle in a freezer. Irradiations were conducted using a sunlamp Osram Ultra-Vitalux 300 W . Flash column chromatography (FC): Merck silica gel 60 (70-230 mesh), AcOEt and petroleum ether (p.e.) as solvent for elution. TLC: Merck silica gel $60 F_{254}$ anal. plates; detection either with $\mathrm{UV}, \mathrm{I}_{2}$, or by spraying with a soln. of 25 g of phosphomolybdic acid, 10 g of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{ml}$ of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, and 940 ml of $\mathrm{H}_{2} \mathrm{O}$ with subsequent heating. Bulb-to-bulb distillations: Büchi-GKR-50 apparatus; b.p.'s refer to air-bath temp. GC: Carlo-Erba, DB-I, 50 m (capillary column). M.p.: not corrected; Büchi-Tottoli apparatus. IR: Perkin-Elmer-297 spectrophotometer; in cm^{-1}. NMR: Bruker $A C-200$ FT ($200 \mathrm{MHz},{ }^{2} \mathrm{H}$) and $A C-250 ~ F T\left(250 \mathrm{MHz},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$); unless otherwise indicated, CDCl_{3} solns.; chemical shifts δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}(=0 \mathrm{ppm})$. MS: Finnigan 1020 and Nermag R10-10C. Elemental analysis: Ilse Beetz, Mikroanalytisches Laboratorium, D-8640 Kronach.

Calculations. The semi-empirical AM1 calculations [18a] were performed on a Silicon-Graphics-4D-320 workstation with the software MOPAC 5.0 (QCPE N ${ }^{\circ} 445$) via the SYBYL interface (Tripos Associates, Ltd., Saint-Louis, USA) for the construction of input geometries and for the graphical analysis of results. All the geometry optimizations for isolated conformers and along a given reaction path were performed with the keyword PRECISE. The UHF Hamiltonian was used to calculate the open-shell species. The standard convergence criteria were used in optimization. The ab initio calculations were performed with the GAUSSIAN 90 software on a Silicon-Graphics-4D-320 workstation [18b]. Here again, the geometry optimizations were performed with the standard convergence criteria and the open-shell species calculated with the UHF Hamiltonian. The direct-SCF option was used in all $a b$ initio calculations.

Radical Precursors. - (Phenylthio)acetonitrile, chloromethyl phenyl sulfone, and methyl (phenylthio) acetate are commercially available. Chloromethyl tol-4-yl sulfone [19], tol-4-yl tridecafluorohexyl sulfide [20], and tertbutyl (phenylthio)acetate [21] [22] were prepared according to reported methods.
tert-Butyl (Phenylselenenyl)methyl Sulfone. A soln. of t-BuSMe ($2.0 \mathrm{~g}, 19 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 2: 3(250 \mathrm{ml})$ was treated at 0° with 48% Oxone ${ }^{68}(35 \mathrm{~g}, 57 \mathrm{mmol})$. The mixture was stirred for 12 h at r.t. Filtration over Celite and evaporation gave a residue which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, evaporation, and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ p.e.) gave $t-\mathrm{BuS}\left(\mathrm{O}_{2}\right) \mathrm{Me}$ as a white solid ($1.3 \mathrm{~g}, 51 \%$). M.p. $80-82^{\circ}\left([23]: 78-79^{\circ}\right)$. To a cooled (-78°) soln. of $t-\mathrm{BuS}\left(\mathrm{O}_{2}\right) \mathrm{Me}(1.0 \mathrm{~g}, 7.3 \mathrm{mmol})$ in THF was added 1m LDA ($14.7 \mathrm{ml}, 14.7 \mathrm{mmol}$). After 30 min stirring at -78°, a soln. of phenylselenenyl chloride ($1.4 \mathrm{~g}, 7.4 \mathrm{mmol}$) in THF $(10 \mathrm{ml})$ was added dropwise. The mixture was allowed to warm up to r.t. After 2 h at r.t., it was poured into $\mathrm{Et}_{2} \mathrm{O}$ (50 ml) and washed with $10 \% \mathrm{aq} . \mathrm{NH}_{4} \mathrm{Cl}$ soln. Drying $\left(\mathrm{MgSO}_{4}\right)$, evaporation, and $\mathrm{FC}(\mathrm{AcOEt} / \mathrm{p} . \mathrm{e} .1: 1)$ gave the desired product ($1.9 \mathrm{~g}, 89 \%$). White solid. M.p. $98.5-100^{\circ}$. IR (film): 2920, 2850, $1455,1260,1020,800 .{ }^{1}$ H-NMR: $1.39(s, t-\mathrm{Bu}) ; 4.13\left(s, \mathrm{CH}_{2}\right) ; 7.25-7.70\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 23.48(q) ; 42.47(t) ; 59.00(s) ; 128.19(d)$; $129.02(d) ; 133.81(d)$. MS: $292\left(13, M^{+}\right), 171(17), 91(47), 84(33), 78(10), 77(18), 71(33), 57(100), 55(22), 50(11)$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SSe}$ (291.27): C 45.36, H 5.54, S 11.01 ; found: C 45.27, H 5.51, S 10.97.

Enamines. - Enamines 1, 2, and 5 are commercially available and were distilled prior to use.
General Procedure 1 [24]. A soln. of the ketone $(0.10 \mathrm{~mol})$ and the amine $(0.60 \mathrm{~mol})$ in heptane (200 ml) was treated at $0^{\circ}\left(\mathrm{N}_{2}\right)$ with a soln. of $\mathrm{TiCl}_{4}(6.6 \mathrm{ml}, 60 \mathrm{mmol})$ in heptane (20 ml). The mixture was stirred for 12 h at r.t. Filtration and evaporation gave the crude product.

General Procedure 2 [25]. A soln. of the ketone (10 mmol), the amine (20 mmol), and $\mathrm{TsOH}(15 \mathrm{mg}$) in benzene or toluene (20 ml) was heated under reflux (Dean-Stark) until no more $\mathrm{H}_{2} \mathrm{O}$ was produced (12 h). Evaporation gave the crude product.

General Procedure 3 [26]. Anh. $\mathrm{K}_{2} \mathrm{CO}_{3}(24 \mathrm{~g}, 174 \mathrm{mmol})$ was added to a soln. of the aldehyde (50 mmol) and the amine (50 mmol) in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$. The mixture was stirred for 12 h at r.t. Filtration and evaporation of the solvent gave the crude product.

1 -(Cyclohex-1-en-1-yl)azetidine (3). From azetidine ($2.4 \mathrm{~g}, 37 \mathrm{mmol}$), cyclohexanone ($4.1 \mathrm{~g}, 42 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(2.5 \mathrm{ml}, 23 \mathrm{mmol})$ according to General Procedure 1 . Bulb-to-bulb distillation of the crude product gave $\mathbf{3}$ $(0.76 \mathrm{~g}, 13 \%)$. Pale yellow oil. B.p. $125^{\circ} / 15$ Torr. Physical and spectral data: in accordance with [29].
N, N-Diethyl(cyclohex-1-en-1-yl) amine (4). From $\mathrm{Et}_{2} \mathrm{NH}(44 \mathrm{~g}, 0.60 \mathrm{~mol})$, cyclohexanone ($9.8 \mathrm{~g}, 0.10 \mathrm{~mol}$), and $\mathrm{TiCl}_{4}(6.0 \mathrm{ml}, 57 \mathrm{mmol})$ according to General Procedure 1. Distillation of the crude product gave $4(12.1 \mathrm{~g}$, 79%). Pale yellow oil. B.p. $75-77^{\circ} / 10$ Torr. Physical and spectral data: in accordance with [27].

I-(3,4-Dihydronaphth-l-yl) pyrrolidine (6). From 3,4-dihydronaphthalen-1(2H)-one ($=\alpha$-tetralone; 6.0 g , 40 mmol), pyrrolidine ($8.2 \mathrm{ml}, 100 \mathrm{mmol}$), and $\mathrm{TsOH}(100 \mathrm{mg})$ in toluene according to General Procedure 2. Bulb-to-bulb distillation of the crude product gave $6(5.8 \mathrm{~g}, 73 \%)$. Pale yellow oil. B.p. $100^{\circ} / 10^{-2}$ Torr. Physical and spectral data: in accordance with [28].
(E)-1-(I-Phenylprop-1-en-I-yl)pyrrolidine (7). From 1-phenylpropan-1-one ($2.7 \mathrm{~g}, 20 \mathrm{mmol}$), pyrrolidine $(5.7 \mathrm{~g}, 80 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.9 \mathrm{ml}, 8 \mathrm{mmol})$ according to General Procedure I. Bulb-to-bulb distillation of the crude product gave $7(3.4 \mathrm{~g}, 90 \%)$. Pale yellow oil. B.p. $75-78 \% / 0.5$ Torr. Physical and spectral data: in accordance with [29].
(E)-4-(1-Phenylprop-1-en-I-yl)morpholine (8). From 1-phenylpropan-1-one (13.4 g .100 mmol), morpholine ($35 \mathrm{~g}, 0.40 \mathrm{~mol}$), and $\mathrm{TsOH}(100 \mathrm{mg})$ in toluene according to General Procedure 2. Distillation of the crude product gave $8(18.3 \mathrm{~g}, 90 \%)$. Colorless oil. B.p. $77-78^{\circ} / 0.5$ Torr. Physical and spectral data: in accordance with [30].
(E)- and (Z)-N,N-Diethyl(1-phenylprop-1-en-1-yl)amine (9). From 1-phenylpropan-1-one (13.4 g, 100 $\mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(36 \mathrm{~g}, 0.60 \mathrm{~mol})$, and $\mathrm{TiCl}_{4}(7.0 \mathrm{ml}, 57 \mathrm{mmol})$ in benzene according to General Procedure 1 . Distillation of the crude product gave $9(15.6 \mathrm{~g}, 82 \%$; (E / Z) $90: 10$). Yellow oil. B.p. $93-102 \% / \mathrm{Torr}$. Physical and spectral data: in accordance with [31].
(E)-4-(Pent-2-en-3-yl)morpholine (10). From pentan-3-one ($1.7 \mathrm{~g}, 20 \mathrm{mmol}$), morpholine ($7.0 \mathrm{~g}, 80 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.9 \mathrm{ml}, 8 \mathrm{mmol})$ in benzene according to General Procedure 1. Bulb-to-bulb distillation of the crude product gave $10(2.5 \mathrm{~g}, 80 \%)$. Colorless oil. B.p. $120-122^{\circ} / 10$ Torr. Physical and spectral data: in accordance with [32].
(E)-I-(3-Phenylprop-1-en-1-yl)pyrrolidine (11). From 3-phenylpropanal ($24.2 \mathrm{~g}, 180 \mathrm{mmol}$), pyrrolidine ($12.8 \mathrm{~g}, 180 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(24.0 \mathrm{~g}, 170 \mathrm{mmol})$ according to General Procedure 3. Distillation gave $11(28.7 \mathrm{~g}$, 85%). Colorless oil. B.p. $120-124^{\circ} / 1$ Torr. IR (film): 2960, $1650,1360,695 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.95\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.13$ $\left(m, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.46\left(d, J=7.5, \mathrm{PhCH}_{2}\right) ; 4.42(d t, J=14.0,7.5, \mathrm{CH}=\mathrm{CHN}) ; 6.39(d, J=14.0, \mathrm{CH}=\mathrm{C} H \mathrm{~N}) ; 7.35(m$, 5 arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 24.78(t) ; 38.74(t) ; 48.96(t) ; 96.88(d) ; 125.38(d) ; 136.66(d) ; 143.25(s)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}$ (187.28): C 83.37, H 9.15, N 7.48; found: C 83.49, H 9.22, N 7.51.
(E)-8-(3-Methylbut-1-en-1-yl)-1,4-dioxa-8-azaspiro[4.5]decane (12). From 1,4-dioxa-8-azaspiro[4.5]decane ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$), 3-methylbutanal ($1.3 \mathrm{~g}, 15 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 9.6 \mathrm{mmol})$ according to General Procedure $3: 12(2.0 \mathrm{~g}, 97 \%)$. Colorless oil. The crude product was used without purification for the reductive alkylation. IR (film): $2960,1650,1464,1360,1340,1145,1100,945,915,800 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.84\left(d, J=7.0, M e_{2} \mathrm{CH}\right) ; 1.57(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 2.10\left(m, \mathrm{Me}_{2} \mathrm{CH}\right) ; 2.75\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.80\left(s, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.25(d d, J=14.0,7.0, \mathrm{CHN}) ; 5.68(d, J=14.0$, CHCHN). ${ }^{13} \mathrm{C}$-NMR: $23.89(q) ; 29.18(d) ; 33.74(t) ; 46.81(t) ; 63.86(t) ; 106.94(s) ; 110.00(d) ; 126.23(d)$.

I-(6-Methylcyclohex-1-en-I-yl)pyrrolidine (24). From pyrrolidine ($13 \mathrm{~g}, 0.18$ mol), 2-methylcyclohexanone ($7.0 \mathrm{~g}, 62 \mathrm{mmol}$), and $\mathrm{TsOH}(0.2 \mathrm{~g})$ in benzene (60 ml) according to General Procedure 2. Bulb-to-bulb distillation of the crude product gave $\mathbf{2 4}(7.0 \mathrm{~g}, 67 \%)$. Pale yellow liquid. B.p. $135^{\circ} / 15$ Torr. Physical and spectral data: in accordance with [12].

I-(5-Methylcyclopent-I-en-1-yl)morpholine (26). From morpholine ($16 \mathrm{~g}, 0.18 \mathrm{~mol}$), 2-methylcyclopentanone $(8.2 \mathrm{~g}, 83 \mathrm{mmol})$, and $\mathrm{TsOH}(0.2 \mathrm{~g})$ according to General Procedure 2. Bulb-to-bulb distillation of the crude product gave $26(11.2 \mathrm{~g}, 80 \%)$. Colorless oil. B.p. $125^{\circ} / 15$ Torr. Physical and spectral data: in accordance with [12].

Radical Reactions. - General Procedure 4. A soln. of $\mathrm{Bu}_{3} \mathrm{SnH}(5.5 \mathrm{mmol})$, radical precursor (5 mmol), enamine (10 mmol), and $2,2^{\prime}$-azobis(isobutyronitrile) ($=2,2^{\prime}$-dimethyl- $2,2^{\prime}$-azobis(propanenitrile); AIBN, 30 mg) in benzene (30 ml) was heated under reflux (TLC monitoring). AIBN was added every 5 h until complete disappearance of the radical precursor. The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}$ and extracted with 1 m HCl . The aq. phase was washed ($3 \times$) with $\mathrm{Et}_{2} \mathrm{O} /$ toluene 1:1, neutralized with 3 M NaOH , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times\right.$). Drying $\left(\mathrm{MgSO}_{4}\right)$ and
evaporation gave the crude product. Diastereoselectivity of the reaction was determined from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of the crude product.

General Procedure 5. Identical to General Procedure 4, except that the mixture was irradiated (sunlamp, 300 W) at 10° instead of being heated under reflux.

General Procedure 6. A soln. of $\mathrm{Bu}_{3} \mathrm{SnH}(5.5 \mathrm{mmol})$ and AIBN $(50 \mathrm{mg})$ in benzene $(10 \mathrm{ml})$ was added over 6 h (automatic syringe) to a refluxing soln. of enamine (10 mmol) and radical precursor (5 mmol) in benzene (20 ml). The mixture was maintained under reflux for 2 h and treated as in General Procedure 4.

General Procedure 7. A soln. of $\mathrm{Bu}_{3} \mathrm{SnH}(5.5 \mathrm{mmol})$, radical precursor (5 mmol), enamine (10 mmol), LiClO_{4} (10 mmol), and AIBN (30 mg) in THF (30 ml) was irradiated (sunlamp, 300 W) at 10° for 6 h . The workup procedure was similar to General Procedure 4.
cis-1-\{2-/(Tolu-4-ylsulfonyl)methyl/cyclohexyl $\}$ pyrrolidine (cis-13). From $1(0.23 \mathrm{~g}, 1.5 \mathrm{mmol}$), chloromethyl tol-4-yl sulfone ($0.61 \mathrm{~g}, 3.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(1.31 \mathrm{~g}, 4.5 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. 1:2) of the crude product (cis/trans 97:3) gave diastereoisomerically pure cis-13 ($0.55 \mathrm{~g}, 57 \%$). White solid. M.p. $110-111^{\circ}$. IR (KBr): 3060, 2920, 2860, 2780, 2760, 1600, 1450, 1290, 1140, 1080, 760, $660{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ $0.90-1.50(m, 5 \mathrm{H}) ; 1.53-1.80(\mathrm{~m}, 6 \mathrm{H}) ; 1.88-2.00(\mathrm{~m}, 1 \mathrm{H}) ; 2.03-2.12(\mathrm{~m}, 1 \mathrm{H}) ; 2.25-2.38\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{~N}\right) ; 2.42(\mathrm{~s}$, $\mathrm{Me}) ; 2.50-2.60\left(\mathrm{~m}, \mathrm{CHCH}_{2} \mathrm{SO}_{2}\right) ; 3.12\left(d d, J=11.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.54\left(d, J=14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.32(\mathrm{~m}$, 2 arom. H); $7.80\left(m, 2\right.$ arom. H). ${ }^{13} \mathrm{C}$-NMR: $144.15 ; 137.47 ; 129.65 ; 127.80 ; 66.36 ; 52.31 ; 51.23 ; 32.09 ; 27.39$; $27.14 ; 25.11 ; 24.77 ; 23.05 ; 19.60$. MS: $321\left(2, M^{+}\right), 166(100), 124$ (2), 110 (6), 97 (5), 91 (25), 77 (2), 65 (11), 55 (7). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}(321.49)$: C 67.25, H 8.47, N 4.36, S 9.97 ; found: C 67.32, H 8.44, N 4.39, S 9.90.

1-[2-(Cyanomethyl)cyclohexylJpyrrolidine $(=2-($ Pyrrolidin-1-yl)cyclohexane-1-acetonitrile; 14). From 1 $(0.15 \mathrm{~g}, 1.0 \mathrm{mmol})$, (phenylthio)acetonitrile ($0.30 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.73 \mathrm{~g}, 2.5 \mathrm{mmol})$ according to General Procedure 6. Bulb-to-bulb distillation of the crude product (cis/trans $92: 8$) gave $14(0.17 \mathrm{~g}, 88 \%)$. Inseparable mixture of isomers. Colorless oil. B.p. 90-100 $/ 0.1$ Torr. IR (film): 3018, 2933, 2862, 2792, 2246, 1452, 1219, 1214, 885. ${ }^{1}$ H-NMR: $1.04-1.33(m, 3 \mathrm{H}) ; 1.51(\mathrm{~m}, 2 \mathrm{H}) ; 1.74(\mathrm{~m}, 6 \mathrm{H}) ; 2.00(\mathrm{~m}, 1 \mathrm{H}) ; 2.06(d t, J=3.5,11.0$, $\mathrm{CHN}) ; 2.35(m, 2 \mathrm{H}) ; 2.47(m, 4 \mathrm{H}) ; 2.52\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 13.95(t) ; 19.39(t) ; 23.04(t) ; 24.08(t)$; $26.30(t) ; 27.74(t) ; 34.74(t) ; 51.50(t) ; 65.30(d) ; 120.58(s)$ MS: $192\left(8, M^{+}\right), 152(4), 124(1), 110(100), 97(17)$, 84 (4), 70 (5), 55 (3). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}$ (192.30): C 51.30, H 5.50, N 56.62; found: C 51.20, H 5.45, N 16.54.

1-\{2- [(Methoxycarbonyl)methyl cyclohexyl\}pyrrolidine (= Methyl 2-(Pyrrolidin-1-yl)cyclohexane-1acetate; 15). From $1\left(0.15 \mathrm{~g}, 1.0 \mathrm{mmol}\right.$), methyl (phenylthio)acetate ($0.36 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu} \mathrm{B}_{3} \mathrm{SnH}(0.73 \mathrm{~g}$, 2.5 mmol) according to General Procedure 6. After washing with $\mathrm{Et}_{2} \mathrm{O} /$ toluene $1: 1$, the aq. acidic phase was evaporated. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$, treated with $\mathrm{Me}_{3} \mathrm{Si}(0.30 \mathrm{ml}, 2.4 \mathrm{mmol})$ and allowed to stand at r.t. for 12 h . After evaporation, the residue was treated with $3 \mathrm{M} \mathrm{NaOH}(30 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 40 \mathrm{ml}$). Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave the crude product (cis/trans 98:2) [35]. Bulb-to-bulb distillation gave $15(0.17 \mathrm{~g}, 74 \%)$. Inseparable mixture of isomers. B.p. $95-110^{\circ} / 0.2$ Torr. IR (film): 2930, 2685, 1740, $1450,1290,1170,1130,1020,830 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.16-1.49(\mathrm{~m}, 5 \mathrm{H}) ; 1.60-1.82(\mathrm{~m}, 7 \mathrm{H}) ; 1.93-2.06(d t, J=3.75,11.5$, CHN); 2.36 ($d d, J=11.1,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOMe}$); 2.41-2.53 ($m, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CHCH}_{2} \mathrm{COOMe}^{2}$); 2.63 (dd, $J=2.1,1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{COOMe}\right) ; 3.66(\mathrm{~s}, \mathrm{MeO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 19.86(t) ; 23.13(t) ; 25.24(t) ; 26.91(t) ; 28.45(t) ; 30.54(t) ; 34.18(d) ;$ $51.30(d) ; 51.71(t) ; 66.56(d) ; 174.88(s)$ MS: $225\left(13, M^{+}\right), 224(2), 194(4), 182(2), 124(2), 110(100), 97(10), 84$ (6), $70(8), 55$ (9). Anal, calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3}$ (225.33): C $69.29, \mathrm{H} 10.29, \mathrm{~N} 6.22$; found: $\mathrm{C} 69.32, \mathrm{H} 10.26, \mathrm{~N} 6.17$.

1-/2-(Tridecafluorohexyl) cyclohexyl]pyrrolidine (16). From 1 ($1.30 \mathrm{~g}, 8.5 \mathrm{mmol}$), tol-4-yl tridecafluorohexyl sulfide ($4.0 \mathrm{~g}, 9.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(3.8 \mathrm{~g}, 13 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. 1:1) of the crude product (cis /trans $90: 10$ by GC) gave $16(2.3 \mathrm{~g}, 58 \%)$. Inseparable mixture of isomers. IR (film): 2960, $2880,1460,1250,1160,810,790,740,730,700,660 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.35-2.10(m, 14 \mathrm{H}) ; 2.45-2.70\left(m, \mathrm{CH}_{2} \mathrm{~N}\right)$. ${ }^{13} \mathrm{C}$-NMR: $23.28(t) ; 29.31(t) ; 41.45(d m) ; 52.35(t) ; 62.68(d)$. MS: $471\left(3, M^{+}\right), 452(3), 202(5), 11(8), 110(100)$, 108 (2), 98 (2), 97 (23), $96(9), 82(2), 81$ (2), 77 (3), 71 (2), 70 (14), 69 (13), 68 (4), 56 (2), 55 (6), 54 (3). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{13} \mathrm{~N}(471.31)$: C 40.78, H 3.85, N 2.97 ; found: C $40.69, \mathrm{H} 3.90$, N 3.08.

4-\{2-f(Tol-4-ylsulfonyl)methylfcyclohexyl\}morpholine (17). From $2(0.33 \mathrm{~g}, 2.0 \mathrm{mmol})$, chloromethyl tol-4-yl sulfone $(0.19 \mathrm{~g}, 0.90 \mathrm{mmol})$, and $\mathrm{Bu}_{3} \mathrm{SnH}(0.58 \mathrm{~g}, 2.0 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt $/ \mathrm{p} . \mathrm{e} .1: 1$) of the crude product (cis/trans 96:4) gave $17(0.42 \mathrm{~g}, 62 \%$). White solid. M.p. 110-1110. IR (KBr): 3060, 2940, $2880,2810,1600,1460,1300,1290,1140,1115,1090 .^{1} \mathrm{H}-\mathrm{NMR}: 0.70-0.90(q d, J=12.5,3.5,1 \mathrm{H}) ; 1.10-1.55(\mathrm{~m}$, $4 \mathrm{H}) ; 1.70-1.85(m, 2 \mathrm{H}) ; 1.95-2.10(\mathrm{~m}, 2 \mathrm{H}) ; 2.20-2.35\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.45(\mathrm{~s}, \mathrm{Me}) ; 2.52-2.62(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)) ; 3.08(\mathrm{dd}$, $\left.J=10.5,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.52\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.62\left(d, J=14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.37$ ($\mathrm{m}, 2$ arom. H); $7.80(\mathrm{~m}, 2$ arom. H). ${ }^{13} \mathrm{C}$-NMR: $19.57 ; 21.48 ; 24.43 ; 24.85 ; 27.41 ; 29.80 ; 50.19 ; 52.47 ; 64.81 ; 67.14 ; 127.90 ; 129.76 ; 137.15$; 144.32. MS: $337\left(2, M^{+}\right), 182(100), 139(1), 124(6), 113(1), 98(1), 91$ (4), 81 (1), 67 (2), 55 (5). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}(337.49)$: C $64.06, \mathrm{H} 8.06, \mathrm{~N} 4.15, \mathrm{~S} 9.50$; found: C $64.09, \mathrm{H} 8.06, \mathrm{~N} 4.20, \mathrm{~S} 9.59$.
$1-\{2-[($ Tol-4-ylsulfonyl)methyl]cyclohexyl\}azetidine (18). From $3(0.16 \mathrm{~g}, 1.1 \mathrm{mmol})$, chloromethyl tol-4-yl sulfone ($0.30 \mathrm{~g}, 1.4 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.29 \mathrm{~g}, 1.0 \mathrm{mmol})$ according to General Procedure 4 . Filtration of the crude product through silica gel ($\mathrm{AcOEt} /$ p.e. $1: 2$) gave $18(0.32 \mathrm{~g}, 10 \%$). Mixture of isomers (cis $/$ trans $>95: 5$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.60-1.00(\mathrm{~m}, 1 \mathrm{H}) ; 1.10-2.20(\mathrm{~m}, 10 \mathrm{H}) ; 2.30-2.45(\mathrm{~m}, 1 \mathrm{H}) ; 2.46(\mathrm{~s}, \mathrm{Me}) ; 2.85-3.05\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.04(\mathrm{dd}$, $\left.J=10.5,14.5,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.44\left(d, J=14.5,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.34(m, 2$ arom. H$) ; 7.80(m, 2$ arom. H$)$. ${ }^{13}$ C-NMR: $144.18 ; 137.27 ; 129.63 ; 127.85 ; 68.75 ; 52.83 ; 52.57 ; 29.47 ; 27.21 ; 24.14 ; 23.99 ; 21.48 ; 19.63 ; 16.88$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ (307.46): C 66.41, H 8.20, N 4.56, S 10.43; found: C 66.35, H 8.08, N 4.62, S 10.37.
cis-N,N-Diethyl\{2-[(phenylsulfonyl)methyl]cyclohexyl\}amine (19). From 4 ($0.61 \mathrm{~g}, 4.0 \mathrm{mmol}$), chloromethyl phenyl sulfone ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.64 \mathrm{~g}, 2.2 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. 1:2) of the crude product (cis/trans 91:9) gave diastereoisomerically pure cis-19 (0.47 g, 76\%). IR (film): 2920, 1450, 1300, $1150,1090 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.77(t, J=6.0, \mathrm{Me}) ; 0.90(\mathrm{~m}, 1 \mathrm{H}) ; 1.10-1.49(\mathrm{~m}, 4 \mathrm{H}) ; 1.7(\mathrm{~m}, 2 \mathrm{H})$; $2.10(m, 1 \mathrm{H}) ; 2.30-2.48(m, 5 \mathrm{H}) ; 2.55(\mathrm{~m}, \mathrm{CHN}) ; 3.08\left(d d, J=11.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.55(d, J=14.0,1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{SO}_{2}$); $7.49-7.91\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 10.65(q) ; 19.54(t) ; 25.25(t) ; 25.53(t) ; 27.37(t) ; 30.88(d) ; 40.93$ (t); $52.26(t) ; 60.59(d) ; 127.71(d) ; 129.02(d) ; 133.20(d) ; 140.17(s)$. MS: $308\left(2, M^{+}\right), 169(10), 168(100), 86(11)$, 84 (22), 77 (47), 71 (19), 67 (10), 56 (22), 51 (21). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ (309.47): C 65.98, H 8.79, N 4.53, S 10.36; found: C 65.97, H 8.74, N 4.54, S 10.40.

4-\{2-[(Tol-4-ylsulfonyl)methyl]cyclopentyl\}morpholine (20). From $5(0.77 \mathrm{~g}, 5.0 \mathrm{mmol})$, chloromethyl tol-4yl sulfone ($0.19 \mathrm{~g}, 0.9 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.44 \mathrm{~g}, 1.5 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. 1:2) of the crude product (cis/trans 84:16) gave diastereoisomerically pure cis-20 (1.70 g, 54\%). M.p. 114-115 . IR (KBr): 2950, 2840, 1595, 1450, 1290, 1140, 1120, 1080, 890. ${ }^{1} \mathrm{H}$-NMR: $1.20(\mathrm{~m}, 1 \mathrm{H}) ; 1.60-1.85(\mathrm{~m}, 5 \mathrm{H})$; $2.20-2.40(\mathrm{~m}, 5 \mathrm{H}) ; 2.45(\mathrm{~s}, \mathrm{Me}) ; 2.55(\mathrm{~m}, 1 \mathrm{H}) ; 2.70\left(d d, J=10.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.60\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.30-7.80$ ($m, 5$ arom. H). ${ }^{13} \mathrm{C}$-NMR: 19.92; 27.08; 28.54; 34.96; $52.48 ; 54.36 ; 66.86 ; 69.38 ; 71.95 ; 128.04 ; 129.83 ; 137.03$; 144.48. MS: $323\left(0.4, M^{+}\right), 169(11), 168(100), 126(28), 91$ (33), $86(7), 65(12), 55$ (11). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$ (323.45): C 63.32, H 7.50, N 4.34, S 9.94; found: C 63.37, H 7.56, N 4.33, S 9.78.

Isomer trans-20 was also isolated. M.p. 103-105 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.20-1.70(\mathrm{~m}, 5 \mathrm{H}) ; 1.90-2.20(\mathrm{~m}, 2 \mathrm{H}) ; 2.30-2.40$ $(m, 5 \mathrm{H}) ; 2.45(s, \mathrm{Me}) ; 2.95\left(d d, J=10.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.45\left(d d, J=2.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.60(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{O}$); 7.30-7.80 ($\mathrm{m}, 5$ arom. H).
cis- I - $\{1,2,3,4$-Tetrahydro-2-[(phenylsulfonyl)methyl]naphth-l-yl\}pyrrolidine (cis-21). From $6(0.20 \mathrm{~g}, 1.0$ mmol), chloromethyl phenyl sulfone ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.73 \mathrm{~g}, 2.5 \mathrm{mmol})$ according to General Procedure 6. FC (AcOEt/p.e. I:3) of the crude product (cis/trans 75:25) gave diastereoisomerically pure cis-21 $(0.18 \mathrm{~g}, 52 \%)$. IR (KBr): $3020,2960,1450,1300,1150,1090,890$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.50-1.70\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.72-1.95(\mathrm{~m}$, $2 \mathrm{H}) ; 2.30-2.90(m, 7 \mathrm{H}) ; 3.06\left(d d, J=6.0,14.5,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.82\left(d d, J=6.0,14.5,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.98(d$, $J=4.0, \mathrm{CHN}) ; 7.05-8.00\left(\mathrm{~m}, 9\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 23.75(t) ; 24.78(t) ; 28.04(t) ; 35.48(d) ; 52.36(t) ; 59.21(t) ;$ 59.97 (d); 125.03 (d); 126.99 (d); 127.73 (d); 128.64 (d); 129.14 (d); 129.49 (d); 133.34 (d); 135.51 (s); 136.31 (s); $140.16(s)$. MS: $356\left(1, M^{+}\right), 215(29), 214(100), 172(13), 145(13), 144(11), 143(15), 130(12), 129(12), 128(30)$, 117 (12), 115 (14), 77 (18), 70 (13). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ (355.50): C $70.95, \mathrm{H} 7.09, \mathrm{~N} 3.94, \mathrm{~S} 9.02$; found: C 70.89, H 7.00, N 4.01, S 9.03.
cis-I- $\{1,2,3,4$-Tetrahydro-2-[(methoxycarbonyl)methyl]naphth-1-yl\}pyrrolidine $(=$ Methyl cis-1,2,3,4-Tetra-hydro-1-(pyrrolidin-1-yl)naphthalene-2-acetate; cis-22). From $6(0.20 \mathrm{~g}, 1.0 \mathrm{mmol}$), methyl (phenylthio)acetate ($0.36 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.73 \mathrm{~g}, 2.5 \mathrm{mmol}$) according to General Procedure 6. After washing with $\mathrm{Et}_{2} \mathrm{O}$ /toluene $1: 1$, the aq. acidic phase was evaporated. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$, treated with $\mathrm{Me}_{3} \mathrm{SiCl}(0.30 \mathrm{ml}, 2.4 \mathrm{mmol})$, and allowed to stand at r.t. for 12 h [33]. Evaporation, heating under reflux with methyloxirane (40 ml) for 4 h , evaporation, and $\mathrm{FC}(\mathrm{AcOEt} / \mathrm{p.e} .1: 5$) of the crude product (cis/trans $91: 9$) gave diastereoisomerically pure cis- $\mathbf{2 2}\left(0.50 \mathrm{~g}, 63 \%\right.$). IR (film): 2940, 1740, 1435, 1350, 1170. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.50-1.80(\mathrm{~m}$, $6 \mathrm{H}) ; 2.20-2.90(\mathrm{~m}, 9 \mathrm{H}) ; 3.67(\mathrm{~s}, \mathrm{MeO}) ; 3.89(d, J=3.5, \mathrm{CHN}) ; 7.05-7.20(\mathrm{~m}, 4$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 23.89 ; 24.57$; $28.51 ; 37.36 ; 37.54 ; 51.21 ; 52.52 ; 60.32 ; 124.82 ; 126.67 ; 128.67 ; 129.67 ; 136.72 ; 136.90 ; 174.04 . \mathrm{MS}: 273\left(19, M^{+}\right)$, 173 (40), $172(100), 158(18), 145(11), 144(31), 143(12), 130(31), 129(50), 128(97), 117(12), 116(10.1), 115(16)$, 104 (13), 72 (39), 70 (14). Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{9}$ (502.49): C 54.98, H 5.22, N 11.15 ; found: 54.89, H 5.18, N 11.11 .

1-(2-Methylcyclohexyl)pyrrolidine [34] (23). A soln. of cis-13 ($0.64 \mathrm{~g}, 2.0 \mathrm{mmol}$), anh. $\mathrm{Na}_{2} \mathrm{HPO}_{4}(1.15 \mathrm{~g}, 8.1$ mmol), and $6 \% \mathrm{Na} / \mathrm{Hg}$ amalgam (3 g) in abs. $\mathrm{MeOH}(20 \mathrm{ml})$ was stirred at r.t. for 2 days. MeOH was evaporated, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and the soln. washed with $1 \mathrm{~m} \mathrm{NaOH}(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Bulb-to-bulb distillation gave cis- $23(0.02 \mathrm{~g}, 6 \%)$. Colorless oil. B.p. $100^{\circ} / 10$ Torr. GC (100°): 10.1 min . Physical and spectral data: in accordance with [12]. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.93(d, J=7.0, \mathrm{Me}) ; 1.1-1.6(m, 7 \mathrm{H})$; $1.70(m, 1 \mathrm{H}) ; 1.65-1.82\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.90(d t, J=11.0,3.8, \mathrm{CHN}) ; 2.07(m, \mathrm{MeCH}) ; 2.40-2.60(m, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$).

A cis /trans ($65: 35$) mixture 23 was prepared by reduction of enamine $24\left(\mathrm{NaBH}_{3} \mathrm{CN}\right)$ according to [12]. GC (100°): 10.1 (cis), 8.5 min (trans).

1-(2-Methylcyclopentyl) morpholine [34] (25). As described for 23 , with cis- 20 ($59 \mathrm{mg}, 0.2 \mathrm{mmol}$), anh. $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.1 \mathrm{~g}, 0.8 \mathrm{mmol}), 6 \% \mathrm{Na} / \mathrm{Hg}$ amalgam (0.5 g), abs. $\mathrm{MeOH}(10 \mathrm{ml}$; stirring until no cis-20 left; workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and $\left.1 \mathrm{~m} \mathrm{NaOH}(10 \mathrm{ml})\right):$ cis- $25(37 \mathrm{mg}, 90 \%)$. Colorless oil. B.p. $100 \% / 10$ Torr. Physical and spectral data: in accordance with [12]. GC (100°): $10.0 \mathrm{~min} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.82(d, J=7.0, \mathrm{Me}) ; 1.30-1.90(\mathrm{~m}, 6 \mathrm{H})$; $2.15($ sext $., J=6.5-7.0, \mathrm{MeCH}) ; 2.28(d d d, J=10.8,7.0,5.5, \mathrm{CHN}) ; 2.43\left(m, \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 13.60(q) ; 20.11$ (t); $20.39(t) ; 31.21(t) ; 34.07(d) ; 53.33(t) ; 66.91(t) ; 70.46(d)$.

Similar treatment of trans-20 gave trans- $\mathbf{2 5}$. GC (100°): 9.5 min . A cis/trans ($98: 2$) mixture $\mathbf{2 5}$ was prepared by reduction of enamine $26\left(\mathrm{NaBH}_{4} / \mathrm{AcOH}\right)$ according to [12]. $\mathrm{GC}\left(100^{\circ}\right): 10.0$ (cis), 9.5 min (trans).
(1)- and (u)-3-Methyl-4-phenyl-4-(pyrrolidin-1-yl)butanenitrile (27). a) From 7 ($3.8 \mathrm{~g}, 20 \mathrm{mmol}$), (phenylthio) acetonitrile ($1.50 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \operatorname{SnH}(3.2 \mathrm{~g}, 11 \mathrm{mmol})$ according to General Procedure 6. FC (AcOEt/ p.e. $1: 3$) of the crude product (66% ds) gave $27(1.8 \mathrm{~g}, 77 \%)$. Inseparable mixture of isomers.
b) From $7(3.8 \mathrm{~g}, 20 \mathrm{mmol})$, (phenylthio)acetonitrile ($1.50 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(3.2 \mathrm{~g}, 11 \mathrm{mmol})$ according to General Procedure 5. FC (AcOEt/p.e. 1:3) of the crude product ($77 \% \mathrm{ds}$) gave $27(1.4 \mathrm{~g}, 62 \%)$. By analogy to 29 and 31, the rel. configuration (u) was attributed to the major isomer. IR (film): 2970, 2800, 2250, $1490,1455,1425,1360,1140,1115,760,710{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.95(d, J=7.0, \mathrm{Me}) ; 1.63-1.78\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.84(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN},(u)\right) ; 2.15-2.33\left(m, \mathrm{CH}_{2} \mathrm{CN},(l)\right) ; 2.35-2.57\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 2.86\left(d d, J=16.5,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN},(u)\right)$; $3.14(d, J=5.0, \mathrm{CHN},(u)) ; 3.35(d, J=7.5, \mathrm{CHN},(l)) ; 7.10-7.49\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}$-NMR: $15.37(t) ; 17.57(q$, $(u)) ; 18.70(q,(l)) ; 23.00(t,(l)) ; 23.26(t,(u)) ; 32.96(d,(l)) ; 33.68(t,(u)) ; 50.21(t,(l)) ; 52.09(t,(u)) ; 70.94(d,(l)) ;$ $73.51(d,(u)) ; 119.44(s,(l)) ; 120.01(s,(u)) ; 127.49(d,(l)) ; 127.96(d,(u)) ; 129.03(d,(u)) ; 129.31(d,(l)) ; 136.41(s$, (l)); $137.80(s,(u))$. MS: $228\left(0.5, M^{+}\right), 161(12), 160(100), 118(2), 117(4), 115(3), 104$ (3), 103 (2), $92(2), 91(23)$, 89 (2), 79 (2), 78 (2), 77 (5), 70 (2), 65 (3), 55 (3), 51 (2). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$ (228.34): C 78.90, H 8.83, N 12.27 ; found: C 78.92, H 8.73, N 12.20 .

Methyl (1)-and (u)-3-Methyl-4-phenyl-4-(pyrrolidin-1-yl)butanoate (28). a) From $7(1.9 \mathrm{~g}, 10 \mathrm{mmol})$, methyl (phenylthio) acetate ($0.91 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(1.6 \mathrm{~g}, 5.5 \mathrm{mmol})$ according to General Procedure 4. After washing with $\mathrm{Et}_{2} \mathrm{O}$ /toluene $1: 1$, the aq. acidic phase was evaporated. The residue was dissolved in $\mathrm{MeOH}(40 \mathrm{ml})$, treated with $\mathrm{Me}_{3} \mathrm{Si}(3.0 \mathrm{ml}, 24 \mathrm{mmol})$, and allowed to stand at r.t. for 12 h [33]. After evaporation, the residue was treated with $3 \mathrm{M} \mathrm{NaOH}(50 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation, FC (AcOEt/p.e. 1:3) of the crude product (64% ds) gave $28(0.69 \mathrm{~g}, 53 \%$).
b) From $7(1.9 \mathrm{~g}, 10 \mathrm{mmol})$, tert-butyl (phenylthio)acetate ($1.12 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(1.6 \mathrm{~g}, 5.5 \mathrm{mmol})$ according to General Procedure 4. Workup as under a). FC of the crude product ($60 \% \mathrm{ds}$) gave $28(0.35 \mathrm{~g}, 27 \%)$. Inseparable mixture of isomers. IR (film): 2965, 2780, 1740, 1550, 1430, 1370, 1250, 1170, 1010, 890, 765, 710. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 0.77\left(d, J=7.0, \mathrm{Me}\right.$, major); $0.86\left(d, J=6.5, \mathrm{Me}\right.$, minor); $1.60-1.96\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{COOMe}$, major); 2.35-2.70 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{COOMe}$, minor); 2.92 (dd, $J=15.0,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOMe}$, major); 3.06 ($d, J=4.5, \mathrm{CHN}$, major); 3.18 ($d, J=6.5, \mathrm{CHN}$, minor); 3.65 (s, MeO, major); 3.68 (s, MeO, minor); $7.20-7.35$ ($\mathrm{m}, 5$ arom. H). ${ }^{13} \mathrm{C}$-NMR: 15.15 (q, minor); 17.95 (q, major); 23.08 (t, minor); 23.27 (t, major); 32.77 (d, minor); 33.21 (d, major); 35.28 (t, minor); 39.83 (t, minor); 50.97 (q, major); 51.39 (q, minor); $52.33(t) ; 72.82$ (d, minor); 74.67 (d, major); $126.93(d) ; 127.59(d) ; 129.17(d) ; 129.43(d) ; 138.20(s$, minor) $; 139.48$ (s, major); 173.85 (s, minor); 174.55 (s, major). MS: $261\left(0.3, M^{+}\right), 161$ (12), 160 (100), 115 (3), 105 (2), 104 (3), 103 (2), 91 (23), 77 (4), 70 (2), 65 (2), 59 (3), 55 (4). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$ (261.37): C 73.53, H 8.87, N 5.36; found: C 73.66, H 8.80 , N 5.47.
(1)- and (u)-1-[2-Methyl-1-phenyl-3-(phenylsulfonyl)propyl]pyrrolidine (29), a) From 7 ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$), chloromethyl phenyl sulfone ($1.9 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(3.2 \mathrm{~g}, 11 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. 1:2) of the crude product ($72 \% \mathrm{ds}$) and recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ p.e.) gave diastereoisomerically pure (l)-29 ($1.8 \mathrm{~g}, 79 \%$).
b) From $7(3.7 \mathrm{~g}, 20 \mathrm{mmol})$, chloromethyl phenyl sulfone ($1.9 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(3.2 \mathrm{~g}, 11 \mathrm{mmol})$ to General Procedure 5. FC (AcOEt/p.e. 1:2) of the crude product ($81 \% \mathrm{ds}$) and recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ p.e.) gave diastereoisomerically pure (l)-29 ($1.1 \mathrm{~g}, 33 \%$).
c) From $7(3.7 \mathrm{~g}, 20 \mathrm{mmol})$, chloromethyl phenyl sulfone ($1.9 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{Bu}_{3} \mathrm{SnH}(3.2 \mathrm{~g}, 11 \mathrm{mmol})$, and $\mathrm{LiClO}_{4}(2.1 \mathrm{~g}, 20 \mathrm{mmol})$ according to General Procedure 7 . $\mathrm{FC}(\mathrm{AcOEt} / \mathrm{p} . \mathrm{e} .1: 2)$ of the crude product ($88 \% \mathrm{ds}$) gave (l)-29 ($1.1 \mathrm{~g}, 33 \%$).
(l)-29 (major): White solid. M.p. 168-169 . IR: 2970, 2800, 1455, 1450, 1300, 1090, 770, 750, 730, 710, 690, 645, 600 . ${ }^{1} \mathrm{H}$-NMR: $0.90(d, J=6.0, \mathrm{Me}) ; 1.65-2.29\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.65\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}, \mathrm{MeCH}\right) ; 3.00(d$, $J=4.0, \mathrm{CHN}) ; 3.90\left(d . J=13.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.08-7.97(\mathrm{~m}, 10$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 15.92(q) ; 22.83(t) ; 30.66$ $(d) ; 49.78(t) ; 60.17(t) ; 71.00(d) ; 127.14(d) ; 127.70(d) ; 129.14(d) ; 129.29(d) ; 133.43(d) ; 136.40(s) ; 140.04(s)$.

CI-MS: 344 ($31, M^{+}$), 218 (1), 161 (14), $160(100), 131$ (5), 104 (5), 91 (62), 77 (61). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ (343.49): C 69.94, H 7.34, N 4.08, S 9.33; found: C 69.89, H 7.27, N 4.04, S 9.27.
(u)-29 (minor): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.96(d, J=6.0, \mathrm{Me}) ; 1.60-2.27\left(m, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.69(m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}, \mathrm{MeCH}\right) ; 3.27(d, J=7.0, \mathrm{CHN}) ; 3.64\left(m, 1 \mathrm{H}^{2}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.10-7.93(m, 10$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 17.83$ $(q) ; 23.13(t) ; 31.20(d) ; 52.21(t) ; 57.07(t) ; 74.82(d) ; 127.22(d) ; 127.76(d) ; 128.67(d) ; 129.13(d) ; 133.40(d) ;$ $138.71(s) ; 140.16(s)$.
(1)- and (u)-I-\{3-/(tert-Butyl)sulfonyl]-2-methyl-1-phenylpropyl\}pyrrolidine (30). a) From 7 ($0.37 \mathrm{~g}, 2.0$ mmol), tert-butyl (phenylselenenyl) methyl sulfone, and $\mathrm{Bu}_{3} \mathrm{SnH}(0.32 \mathrm{~g}, 1.1 \mathrm{mmol})$ according to General Procedure 4. $\mathrm{FC}(\mathrm{AcOEt} / \mathrm{p} . \mathrm{e} .1: 2)$ of the crude product $(74 \% \mathrm{ds})$ gave diastereoisomerically pure $(l)-\mathbf{3 0}(0.19 \mathrm{~g}, 58 \%)$.
b) From $7(0.37 \mathrm{~g}, 2.0 \mathrm{mmol})$, tert-butyl (phenylselenenyl)methyl sulfone, and $\mathrm{Bu}_{3} \mathrm{SnH}(0.32 \mathrm{~g}, 1.1 \mathrm{mmol})$ according to General Procedure 5. FC (AcOEt/p.e. $1: 2$) of the crude product ($85 \% \mathrm{ds}$) gave (l) $\mathbf{- 3 0}(0.10 \mathrm{~g}, 30 \%$).
c) From $7(0.37 \mathrm{~g}, 2.0 \mathrm{mmol})$, tert-butyl (phenylselenenyl)methyl sulfone, $\mathrm{Bu} \mathrm{H}_{3} \mathrm{SnH}(0.32 \mathrm{~g}, 1.1 \mathrm{mmol})$, and $\mathrm{LiClO}_{4}(0.21 \mathrm{~g}, 2.0 \mathrm{mmol})$ according to General Procedure 7. FC (AcOEt/p.e. $1: 2$) of the crude product ($87 \% \mathrm{ds}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ p.e. $)$ gave (l) $\mathbf{- 3 0}(80 \mathrm{mg}, 26 \%)$.
(l)-30 (major): M.p. 154-155.5 . IR (film): 2945, 2760, 1670, 1445, 1270, 1100, 755, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.93$ (d^{2}, $J=6.5, \mathrm{Me}) ; 1.33(s, t-\mathrm{Bu}) ; 1.65\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.19-2.53\left(m, \mathrm{CHN}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 2.85(m, \mathrm{MeCH}) ; 3.03(d$, $J=5.0, \mathrm{CHN}) ; 3.70\left(d, J=13.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.10-7.28\left(\mathrm{~m}, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 18.35(q) ; 23.18(q) ; 23.18$ (t); $29.69(d) ; 45.24(t) ; 52.24(t) ; 59.03(s) ; 74.65(d) ; 127.17(d) ; 127.75(d) ; 128.57(d) ; 139.19(s)$. CI-MS: 324 (23, M^{+}), 161 (13), 160 (100), 104 (5), 91 (37), 77 (6). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}(323.50): \mathrm{C} 66.83, \mathrm{H} 9.04, \mathrm{~N} 4.33$, S 9.91 ; found: C 66.96, H 9.02, N 4.38, S 9.88.
(u) $\mathbf{- 3 0}$ (minor): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00(d, J=6.5, \mathrm{Me}) ; 1.33(s, t-\mathrm{Bu}) ; 1.57\left(m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.35(m$, $\mathrm{CH}_{2} \mathrm{~N}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 2.90(m, \mathrm{MeCH}) ; 3.34(d, J=7.0, \mathrm{CHN}) ; 3.38\left(d d, J=13.0,4.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 7.10-7.28$ $\left(m, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 16.54(q) ; 23.24(q) ; 23.24(t) ; 29.22(d) ; 48.70(t) ; 49.88(t) ; 52.32(s) ; 71.08(d) ; 127.14$ (d) $; 127.70(d) ; 128.63(d) ; 129.45(d) ; 136.85(s)$.
(1)-4-[2-Methyl-1-phenyl-3-(phenylsulfonyl)propyl]morpholine (31). From 8 ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$), chloromethyl phenyl sulfone ($0.95 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(1.60 \mathrm{~g}, 5.5 \mathrm{mmol})$ according to General Procedure 5. FC (AcOEt/p.e. 1:2) of the crude product (80% ds) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ p.e.) gave diastereoisomerically pure (l) $\mathbf{- 3 1}\left(0.74 \mathrm{~g}, 41 \%\right.$). White solid. M.p. $138.5-140^{\circ}$. IR (film): $2960,2930,1730,1450,1305,1145,1120 .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $0.95(d, J=6.0, \mathrm{Me}) ; 2.20\left(m, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.70\left(m, \mathrm{MeCH}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 3.01(d, J=7.0, \mathrm{CHN}) ; 3.56\left(m, \mathrm{CH}_{2} \mathrm{O}\right)$; $7.00-7.90\left(\mathrm{~m}, 10\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 17.88(\mathrm{q}) ; 28.01(d) ; 50.89(t) ; 57.38(t) ; 66.84(t) ; 74.17(d) ; 127.45(d)$; $127.73(d) ; 127.99(d) ; 128.79(d) ; 129.14(d) ; 133.46(d) ; 136.43(s) ; 139.75(s)$. Cl-MS: $360\left(24, M^{+}\right), 243(4), 177$ (11), 176 (100), 117 (4), 105 (6), 91 (23), 78 (7), 77 (27). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ (359.49): C 66.82, H 7.01 , N 3.90, S 8.92; found: C 66.69, H 7.02, N 3.94, S 8.73.
(1)- and (u)-4-\{3-[(tert-Butyl) sulfonyl]-2-methyl-1-phenylpropyl\}morpholine (32). From 8 ($0.81 \mathrm{~g}, 4.0$ mmol), tert-butyl (phenylselenenyl)methyl sulfone ($0.58 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(0.64 \mathrm{~g}, 2.2 \mathrm{mmol}$) according to General Procedure 5. FC (AcOEt/p.e. 1:2) of the crude product ($87 \% \mathrm{ds}$) gave $32(0.33 \mathrm{~g}, 48 \%$). Inseparable mixture of isomers. IR (film): 2970, 2850, 1450, 1280, 1120. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.95(d, J=6.5$, Me, minor); 1.03 (d, $J=6.5, \mathrm{Me}$, major); 1.29 (s, t-Bu, major); $1.50\left(s, t\right.$-Bu, minor); $2.25-2.50\left(m, \mathrm{CH}_{2} \mathrm{~N}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right) ; 2.98(\mathrm{~m}$, $\mathrm{MeCH}) ; 3.12\left(d, J=7.0, \mathrm{CHN}\right.$, major) ; $3.43\left(d, J=13.0,1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{SO}_{2}$, major); $3.60\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.00-7.30(\mathrm{~m}$, 5 arom. H). ${ }^{13} \mathrm{C}$-NMR: 18.31 (q, minor); 18.43 (q, major); 22.95 (q, major); 32.10 (q, minor); 26.29 (d); 45.45 ($($); $50.89(t) ; 58.85(s) ; 66.86(t$, major $) ; 67.09(t$, minor $) ; 73.71$ (d, minor); 74.09 (d, major); $127.40(d) ; 127.78$ (d, minor); 127.96 (d, major); 128.70 (d, major); 128.92 (d, minor); 134.33 (s, minor); 136 (s, major). CI-MS: 218 (1), $177(11), 176(100), 105(9), 91(23), 86(42), 84(52), 77(10)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}(339.50): \mathrm{C} 63.68, \mathrm{H} 8.61$, N 4.13, S 9.44; found: C 63.58, H 8.50, N 4.15, S 9.37.
(1)- and (u)- N, N-Diethyl[2 -methyl-1-phenyl-3-(phenylsulfonyl)propyl/amine (33). From 9 ($1.89 \mathrm{~g}, 10 \mathrm{mmol}$), chloromethyl phenyl sulfone ($0.95 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnH}(1.60 \mathrm{~g}, 5.5 \mathrm{mmol})$ according to General Procedure 5 . FC (AcOEt/p.e. 1:4) of the crude product ($68 \% \mathrm{ds}$) gave $33(0.35 \mathrm{~g}, 20 \%$). Inseparable mixture of isomers. IR (film): 2970, 2930, 1450, 1380, 1150, 1090. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.93\left(t, J=7.0, \mathrm{Me} \mathrm{CH} \mathrm{C}_{2}\right) ; 1.12(d, J=6.0, \mathrm{MeCH}) ; 1.91(m$, $\mathrm{MeCH} \mathrm{H}_{2} \mathrm{~N}$, minor) ; 2.18, 2.46 ($\mathrm{m}, \mathrm{MeCH} \mathrm{H}_{2} \mathrm{~N}$, major); $2.68\left(m, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{SO}_{2}, \mathrm{CHN}, \mathrm{MeCH}$, major); 3.31 ($m, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{SO}_{2}$, major); $4.28\left(d, J=13.0,1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{SO}_{2}$, minor); $6.90-8.00$ ($m, 10$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 11.66$ (q, major); 13.62 (q, minor); $18.09(q) ; 29.07$ (d, minor); 29.20 (d, major); 41.87 (t, major); 42.48 (t, minor); 58.72 (t, major); 59.92 (t, minor); 67.88 (d, minor); 68.59 (d, major); 127.13 (d, minor); 127.82 (d, major); 127.86 (d); $128.82(d) ; 128.93$ (d, minor); 129.11 (ds, major); $133.38(d) ; 137.11(s) ; 139.90(s)$. Cl-MS: 257 (32), 256 (9), 113 (7), 112 (100), 91 (18), 84 (4), 70 (4). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ (345.52): C 69.53, H 7.88, N 4.05, S 9.28; found: C 69.66, H 7.80, N 4.08, S 9.21 .
(1)- and (u)- N, N-Diethyl\{3-I(tert-butyl) sulfonyl]-2-methyl-l-phenylpropyl\}amine (34). From 9 (0.76 g, 4.0 mmol), tert -butyl (phenylselenenyl)methyl sulfone ($0.58 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{Bu} 3 \mathrm{SnH}(0.74 \mathrm{~g}, 2.2 \mathrm{mmol})$ according to General Procedure 5. FC (AcOEt/p.e. 1:3) of the crude product ($76 \% \mathrm{ds}$) gave $34(0.13 \mathrm{~g}, 20 \%$). Inseparable mixture of isomers. IR (film): 2980, 2940, 1460, 1450, 1290, 1120, 755, 660. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.96\left(t, J=7.0, \mathrm{Me} \mathrm{CH}_{2}\right)$; $1.17(d, J=6.0, \mathrm{Me} \mathrm{CH}) ; 1.26\left(s, t-\mathrm{Bu}\right.$, major); $1.43(\mathrm{~s}, t-\mathrm{Bu}$, minor $) ; 1.98\left(m, \mathrm{CH}_{2}\right.$, minor $) ; 2.28\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$, major); 2.61 ($m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NC}$, major); 2.95 ($\mathrm{m}, \mathrm{MeCH}$); 3.19 ($d d, J=13.0,1.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}$, major); 3.34 (d, $J=11.0, \mathrm{CHN}$, minor $) ; 3.46(d, J=8.0, \mathrm{CHN}$, major $) ; 4.13\left(\mathrm{dd}, \mathrm{J}=13.0,2.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$, minor $) ; 7.00-7.40(\mathrm{~m}$, 5 arom. H). ${ }^{13} \mathrm{C}$-NMR: 11.72 (q, major); 13.78 (q, minor); $18.65(\mathrm{~d}) ; 23.02$ (q, major); 23.25 (q, minor); 27.48 (q, minor); 27.59 (q, major); 41.98 (t, major); 42.62 (t, minor); 47.16 (t, major); 48.44 (t, minor); $58.95(s) ; 68.32$ (d, minor); 68.68 (d, major); 126.98 (d, minor); 127.11 (d, major); 127.73 (d, minor); 127.82 (d, major); 128.88 (d, major); 129.03 (d, minor); 135.88 (s, minor); 137.61 (s, major). CI-MS: $326\left(26, M^{+}\right), 163(12), 162(100), 105(4), 91$ (20), 79 (8). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2}$ (325.52): $\mathrm{C} 66.42, \mathrm{H} 9.60, \mathrm{~N} 4.30, \mathrm{~S} 9.85$; found: $\mathrm{C} 66.44, \mathrm{H} 9.65, \mathrm{~N} 4.26$, S 9.83.
(1)- and (u)-4-[2-Methyl-1-(phenylsulfonyl)pentan-3-yl/]morpholine (35). From 10 ($0.62 \mathrm{~g}, 4.0 \mathrm{mmol}$), chloromethyl phenyl sulfone ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), and $\mathrm{B} u_{3} \mathrm{SnH}(0.64 \mathrm{~g}, 2.2 \mathrm{mmol})$ according to General Procedure 5 . FC (AcOEt/p.e. $1: 2$) of the crude product $(93 \%$ ds) gave $35(0.47 \mathrm{~g}, 76 \%)$. Colorless oil. The rel. configuration (u) of the major isomer was attributed by analogy to 29 and 31. IR (film): 2960, 1445, 1300, 1145, 1115, $1085,995$. ${ }^{1} \mathrm{H}$-NMR; $0.80\left(t, J=7.0, M e \mathrm{CH}_{2}\right) ; 0.95(d, J=7.0, M e \mathrm{CH},(u)) ; 1.05(d, J=7.0, \mathrm{Me} \mathrm{CH},(l)) ; 1.20-1.50(\mathrm{~m}$, $\left.\mathrm{MeCH} \mathrm{C}_{2}\right) ; 2.13-2.50(m, 6 \mathrm{H}) ; 2.70\left(d d, J=9.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2},(l)\right) ; 2.85\left(d d, J=7.0,14.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2},(u)\right)$; $3.50(m, 5 \mathrm{H}) ; 7.42-7.83\left(m, 5\right.$ arom. H) ${ }^{13} \mathrm{C}-\mathrm{NMR}((u)$, colorless oil): $12.56(q) ; 16.10(q) ; 19.11(t) ; 30.44(d)$; $51.09(t) ; 59.46(t) ; 67.27(t) ; 68.29(d) ; 127.55(d) ; 127.63(d) ; 129.05(d) ; 133.31(d) ; 139.88(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}(l)$: $13.38(q) ; 17.67(q) ; 19.57(t) ; 30.44(d) ; 44.88(t) ; 59.81(t) ; 67.27(t) ; 69.47(d) ; 127.55(d) ; 127.63(d) ; 129.05(d)$; $133.31(d) ; 139.88(s)$. CI-MS: $312\left(26, M^{+}\right), 140(3), 129(7), 128(100), 78(4), 77(21)$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ (311.45): C 61.71, H 8.09, N 4.50, S 10.30; found: C 61.74, H 8.06, N 4.59, S 10.21.
(1)- and (u)-3-Methyl-4-morpholinohexanenitrile (36). From 10 ($0.62 \mathrm{~g}, 4.0 \mathrm{mmol}$), (phenylthio)acetonitrile $(0.42 \mathrm{~g}, 2.8 \mathrm{mmol})$, and $\mathrm{Bu}_{3} \mathrm{SnH}(0.58 \mathrm{~g}, 2.00 \mathrm{mmol})$ according to General Procedure 4. FC (AcOEt/p.e. $1: 3$) of the crude product (74% ds) gave $36(0.21 \mathrm{~g}, 78 \%$). Inseparable mixture of isomers. IR (film): 2960, 2240, 1450, 1290, 1250, 1120. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.85\left(t, J=9.0, M e \mathrm{CH}_{2}\right.$, major) ; $0.87\left(t, J=9.0, M e \mathrm{CH}_{2}\right.$, minor) $; 0.90(d, J=8.0, \mathrm{Me} \mathrm{CH}$, major) $; 0.98(d, J=8.0, \mathrm{Me} \mathrm{CH}$, minor $) ; 1.20-2.07\left(m, \mathrm{MeCH}_{2}\right) ; 2.20(m, 1 \mathrm{H}) ; 2.37-2.78(m, 5 \mathrm{H}) ; 3.52(m, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$-NMR: 12.42 (q, major); 13.30 (q, minor); $15.22(t$, major); 17.06 (t, minor); 19.42 (q, major); 19.77 (q, minor); 21.80 (t, major); 22.42 (t, minor); 32.28 (d, minor); 33.17 (d, major); 49.03 (t, minor); 50.97 (t, major); 67.15 (t); $67.80\left(d\right.$, major); $68.98\left(d\right.$, minor); $119.29(s)$ MS: $196\left(7, M^{+}\right), 168(5), 128(100), 110(5), 85(8), 83(11), 69(15), 56$ (27). Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (196.30): C 67.31, $\mathrm{H} 10.27, \mathrm{~N} 14.27$; found: C 67.38, H 10.28, N 14.25.
(1)- and (u)-3-Benzyl-4-pyrrolidino($4-{ }^{2} H$)butanenitrile (37). From 11 ($1.9 \mathrm{~g}, 10 \mathrm{mmol}$), (phenylthio)acetonitrile ($0.75 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{Bu}_{3} \mathrm{SnD}(1.6 \mathrm{~g}, 5.5 \mathrm{mmol}$) according to General Procedure $6 . \mathrm{FC}$ (AcOEt/p.e. 1:4) of the crude product gave $37(0.69 \mathrm{~g}, 60 \%)$. Inseparable $1: 1$ mixture of isomers. IR (film): $3250,2960,2920$, $2790,2240,1680,1600,1495,1455,745,700 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.78\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.06-2.71(\mathrm{~m}, 9 \mathrm{H}) ; 2.87(d d d$, $\left.J=14.0,6.0,3.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right) ; 7.10-7.40\left(m, 5\right.$ arom. H). ${ }^{2} \mathrm{H}-\mathrm{NMR}: 2.30,2.70 .{ }^{13} \mathrm{C}-\mathrm{NMR}: 19.20(t) ; 23.39(t) ;$ $36.52(d) ; 37.73(t) ; 53.98(t) ; 58.42\left(d t, J\left({ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right)=20.0\right) ; 118.56(s) ; 126.09(d) ; 128.38(d) ; 128.87(d) ; 138.52(s)$. MS: $229\left(2, M^{+}\right), 118(3), 91(8), 86(6), 85(100), 84(12), 78(1), 65(3), 56(3), 55(5), 51(2)$.

The reaction was also run using $\mathrm{Bu}_{3} \mathrm{SnH}$ to give 3-benzyl-4-pyrrolidinobutanenitrile. Picrate derivative: M.p. 103-104 . Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{7}$ (457.45): C 55.14, H 5.07, N 15.31 ; found: C 55.13, H 4.99, N 15.28.
(1)- and (u)-3-[(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl) $\left({ }^{2} H_{1}\right)$ methyl]-4-methylpentanenitrile (38). From 12 $(0.80 \mathrm{~g}, 4.0 \mathrm{mmol})$, (phenylthio) acetonitrile $(0.30 \mathrm{~g}, 2.0 \mathrm{mmol})$, and $\mathrm{Bu}_{3} \mathrm{SnD}(0.64 \mathrm{~g}, 2.0 \mathrm{mmol})$ according to General Procedure 6. FC (AcOEt/p.e. 1:4) of the crude product gave $38(0.35 \mathrm{~g}, 69 \%$). Inseparable $1: 1$ mixture of isomers. IR (film): $2960,2820,1470,1365,1145,1100,1040,965,950,920 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.88(d, J=7.0, \mathrm{MeCH})$; $0.90(d, J=7.0, M e \mathrm{CH}) ; 1.60-1.80(m, 6 \mathrm{H}) ; 2.10-2.60(m, 7 \mathrm{H}) ; 3.90\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 17.62(t) ; 19.17(q) ;$ $19.54(q) ; 28.81(d) ; 34.61(t) ; 39.00(d) ; 51.48(t) ; 57.91\left(d t, J\left({ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right)=20.1\right) ; 63.94(t) ; 106.96(s) ; 119.40(s)$. MS: $253\left(100, M^{+}\right), 212(11), 156(55), 126(5), 100(4), 99(27), 86(9), 85(2), 83(4), 71$ (10).

The reaction was also run using $\mathrm{Bu}_{3} \mathrm{SnH}$ to give 3-[(1,4-dioxa-8-azaspiro[4.5 /decan-8-yl)methyl/-4-methylpentanenitrile. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(252.36)$: $\mathrm{C} 66.63, \mathrm{H} 9.59, \mathrm{~N} 11.10$; found: $\mathrm{C} 66.51, \mathrm{H} 9.53$, N 11.02 .
X-Ray Structure Analysis of (1)-29 and (1)-31. Suitable crystals were obtained by slow crystallization from $\mathrm{Et}_{2} \mathrm{O} /$ p.e. ($\left.(l)-29\right)$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ p.e. $((l)-31)$. Experimental parameters are given in Tables 3 and 4, resp. Atomic coordinates, bond lengths, and bond angles are deposited with the Cambridge Crystallographic Data Centre.

Table 3. X-Ray Structure Determination of (1)-29

Crystal Data		Standard reflections	3 measured every 97
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$		reflections
Color, habit	colorless transparent platelets	Index ranges	$\begin{aligned} & -10<h<10,-12<k<12, \\ & -22<l<22 \end{aligned}$
Crystal system	monoclinic	Reflections collected	8406
Space group	$P 2_{1} / n$	Independent reflections	3214
Unit cell dimensions	$\begin{aligned} & a=9.181(4) \AA \\ & b=10.482(4) \AA \end{aligned}$	Observed reflections	$\begin{aligned} & 2181(F>5 \sigma(F), \\ & \left.R_{\mathrm{int}}=3.2 \%\right) \end{aligned}$
	$c=19.341(8) \AA$	Absorption correction	N / A
	$\beta=102.04(3){ }^{\circ}$		
Volume	1820.3(2) \AA^{3}	Solution and Refinement	
Z	4	System used	Siemens SHELXTL PLUS
Formula weight	343.5		(VMS)
Density (calc.)	$1.253 \mathrm{Mg} / \mathrm{m}^{3}$	Solution	direct methods
Absorption coefficient	$1.89 \mathrm{~cm}^{-1}$	Refinement method	full-matrix least-squares
$F(000)$	736	Quantity minimized	$\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$
		Absolute structure	N / A
Data Collection		Extinction correction	N / A
Diffractometer used	Siemens R3m/V	H-Atoms	x, y, z, and $U_{\text {iso }}$ refined
Radiation	MoK $K_{x}(\lambda=0.71073 \AA)$	Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0000 F^{2}$
Temperature	293 K	Number of parameters	
Monochromator	highly oriented graphite crystal	refined Final R indices	317
2θ Range	2.0-50.0 ${ }^{\circ}$	(obs. data)	$R=5.86 \%, R_{w^{\prime}}=3.28 \%$
Scan type	$2 \theta-\theta$	Goodness-of-fit	2.01
Scan speed	variable; 2.00 to	Largest and mean D / σ	0.005, 0.001
	$10.00^{\circ} / \mathrm{min}$ in ω	Data-to-parameter ratio	10.1:1
Scan range (ω)	2.00° plus K_{x} separation	Largest difference peak	$0.47 \mathrm{e} \AA^{-3}$
Background measurement	stationary crystal and stationary counter at beginning and end of scan, each for 50.0% of total scan time	Largest difference hole	$-0.37 e^{\AA}{ }^{-3}$

Table 4. X-Ray Structure Determination of (1)-31

Crystal Data		Monochromator	highly oriented graphite crystal
Color, habit	colorless transparent	2θ Range	2.0-45.0 ${ }^{\circ}$
	platelets	Scan type	$2 \theta-\theta$
Crystal system	orthorhombic	Scan speed	variable; 0.25 to
Space group	Pbca		$4.00^{\circ} / \mathrm{min}$ in ω
Unit cell dimensions	$a=8.6935(4) \AA$	Scan range	$0.66+0.34 \tan \theta$
	$\begin{aligned} & b=19.1768(9) \AA \\ & c=22.698(1) \AA \end{aligned}$	Background measurement	first and last 16 of the 96 profile steps
Volume	3784.1(3) \AA^{3}	Standard reflections	3 measured every 108 min
Z	8	Index ranges	$0<h<9,0<k<20$,
Formula weight	359.5		$0<l<24$
Density (calc.)	$1.262 \mathrm{~g} / \mathrm{cm}^{3}$	Reflections collected	18976
Absorption coefficient	$1.89 \mathrm{~cm}^{-1}$	Independent reflections	2472
$F(000)$	1536	Observed reflections	$1921(F>6 \sigma(F)$,
Data Collection			$\left.R_{\text {int }}=1.8 \%\right)$
Diffractometer used	Enraf-Nonius CAD4	Reflections used in	
Radiation	Mo $K_{\alpha}(\lambda=0.71073 \AA)$	refinement	2324 (F excluded if $F \leqslant 0$)
Temperature	293 K	Absorption correction	N / A

Table 4 (cont.)

Solution and Refinement		Number of parameters refined	326
System used	Siemens SHELXTL PLUS	Final R indices (obs. data)	$R=4.23 \%, R_{w}=2.16 \%$
	(VMS)	Goodness-of-fit	3.23
Solution	direct methods	Largest and mean D / σ	$0.002,0.001$
Refinement method	full-matrix least-squares	Data-to-parameter ratio	$7.1: 1$
Quantity minimized	$\sum w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$	Largest difference peak	$0.15 \mathrm{e}^{-3}$
Absolute structure	N / A	Largest difference hole	$-0.26 \mathrm{e}^{-3}$
Extinction correction	N / A		
H-Atoms	x, y, z, and $U_{\text {iso }}$ refined		
Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0000 F^{2}$		

REFERENCES

[1] G. Stork, R. Terrel, J. Smuszkovicz, J. Am. Chem. Soc. 1954, 76, 2029.
[2] a) G.H. Alt, A. G. Cook, in 'Enamines: Synthesis, Structure, and Reactions', 2nd edn., Ed. A. G. Cook, Marcel Dekker, New York, 1988, pp. 181-246; b) A. G. Cook, ibid. pp. 347-440.
[3] J. V. Paukstelis, A. G. Cook, in 'Enamines: Synthesis, Structure, and Reactions', 2nd edn., Ed. A. G. Cook, Marcel Dekker, New York, 1988, pp. 275.
[4] P. Renaud, S. Schubert, Angew. Chem. Int. Ed. 1990, 29, 433.
[5] P. Renaud, S. Schubert, Synlett 1990, 624.
[6] P. Renaud, P. Björup, P.-A. Carrupt, K. Schenk, S. Schubert, Synlett 1992, 211.
[7] G. A. Russel, K. Wang, J. Org. Chem. 1991, 56, 3475.
[8] K. Narasaka, K. lwakura, T. Okauchi, Chem. Lett. 1991, 423.
[9] D. H. R. Barton, J. C. Jaszberenyi, E. A. Theodorakis, Tetrahedron 1992, 48, 2613.
[10] D. P. Curran, G. Thoma, J. Am. Chem. Soc. 1992, 114, 4436.
[II] W. A. White, H. Weingarten, J. Org. Chem. 1967, 32, 213.
[12] R.O. Hutchins, W.-Y. Su, R. Sivakumar, F. Cistone, Y.P. Stercho, J. Org. Chem. 1983, 438, 3412.
[13] F. Johnson, Chem. Rev. 1968, 68, 375.
[14] R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
[15] N. A. Porter, B. Giese, D.P. Curran, Acc. Chem. Res. 1991, 24, 296.
[16] For leading ref., see: a) D. J. Hart, H. C. Huang, R. Krishnamurthy, T. Schwartz, J. Am. Chem. Soc. 1989, I11, 7507; b) D. J. Hart, R. Krishnamurthy, J. Org. Chem. 1992, 57, 4457; c) B. Giese, M. Bulliard, H.-G. Zeitz, Synlett 1991, 425; d) B. Giese, W. Damm, F. Wetterich, H.-G. Zeitz, Tetrahedron Lett. 1992, 33, 1863; e) K. Durkin, D. Liotta, J. Rancourt, J.-F. Lavallée, L. Boisvert, Y. Guindon, J. Am. Chem. Soc. 1992, 114, 4912; see also [6] and [10].
[17] D. P. Curran, G. Thoma, Tetrahedron Lett. 1991, 32, 6307.
[18] a) M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J.J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902; b) M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J.S. Binkley, C. Gonzalez, D.J. Defrees, D. J. Fox, R.A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, J.A. Pople, 'GAUSSIAN 90 Software', Copyright (c) 1990, Gaussian, Inc., Pittsburg, PA.
[19] T. Satoh, T. Ookara, Y. Ueda, Tetrahedron Letl. 1988, 29, 313.
[20] C. Wakselmann, M. Tordeux, J. Org. Chem. 1985, 50, 4047.
[21] K. B. Tomer, J. Gleich, Org. Mass Spectrom. 1976, 1I, 1262.
[22] N. Ono, T. Yoshimura, T. Saito, R. Tamura, A. Kaji, Bull. Chem. Soc. Jpn. 1979, 52, 1716.
[23] H. Rheinboldt, F. Mott, E. Motzkus, J. Prakt. Chem. 1932, 134, 257.
[24] W.A. White, H. Weingarten, J. Org. Chem. 1967, 32, 213.
[25] R. D. Burpitt, J. G. Thweat, Org. Synth. 1973, Coll. Vol. 5, 277.
[26] C. Mannich, H. Davidsen, Chem. Ber. 1936, 69, 2106.
[27] E. Previdoli, Dissertation 6707, ETH Zürich, 1980.
[28] F. A. Van der Vlugt, J. W. Verhoeven, U. F. Pandit, Recl. Trav. Chim. Pays-Bas 1970, 89, 1258.
[29] P. Klemmenser, G. Schroll, S. O. Lawesson, Ark. Kem. 1967, 605.
[30] R. Stradi, P. Trimarco, A. Vigevani, J. Chem. Soc., Perkin Trans. I 1978, 1.
[31] R. Stradi, D. Pocar, C. Cassio, J. Chem. Soc., Perkin Trans. 1974, 89, 1258.
[32] R. Stradi, D. Pocar, La Chimica e l'Industria 1971, 53, 265.
[33] T. H. Chan, M. A. Brook, Synthesis 1983, 201.
[34] B. M. Trost, H. C. Arndt, P. E. Shege, T. R. Verhoeven, Tetrahedron Lett. 1976, 39, 3477.

[^0]: ${ }^{1}$) New address: Institut de Chimie Organique, Université de Fribourg, Pérolles, CH-1700 Fribourg.

[^1]: ${ }^{2}$) The determination of the structure of both compounds by X-ray crystal-structure analysis was necessary, since there was a complete lack of similarity between the ${ }^{1} \mathrm{H}$-NMR spectra of the major isomers of 29 and $\mathbf{3 1}$.

[^2]: ${ }^{3}$) Similar approaches were successfully applied to numerous other radical reactions [15] [16].

[^3]: ${ }^{4}$) This model was already presented in a preliminary communication [6] and also proved to be valuable for reactions based on phenylselenenyl-group transfer [10].

[^4]: ${ }^{5}$) A similar model based on $A^{1,3}$ strain was reported for the reduction of cyclic iminium salts by metal hydrides [12].

